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angles the effect on the thermal parameters may be 
appreciable. 

On some occasions the polarization ratio K has 
been included in the parameters that are refined. The 
results have not been encouraging as the values may 
have fallen far outside the bounds of direct determina- 
tions (Vincent & Flack, 1980; Bachmann, Kohler, 
Schulz & Weber, 1984). This is not very surprising in 
the light of the above findings, which demonstrate 
that a smooth angular function can be absorbed in 
the model in many different ways. 

The users of diffractometers are urged to determine 
K experimentally, or at least to make an estimate as 
outlined in the Introduction. The values given in Table 
1 suggest that the dynamical value for K is a better 
estimate than the customarily used kinematical value. 
Jennings (1984) lists 40 determinations of K in a 
survey conducted for the International Union of 
Crystallography Commission on Crystallographic 
Apparatus. These results also give guidelines for an 
estimation of K. 
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Abstract 

It is well known [Willis (1970). Acta Cryst. A26, 
396-401] from the theory of one-phonon scattering 
of thermal neutrons by a crystal that the nature of 
the thermal diffuse scattering (TDS) near the Bragg 
peak depends on whether the neutron velocity is 
greater than or is less than the sound velocity in the 
crystal. For faster-than-sound neutrons the TDS rises 
to a peak coinciding with the Bragg peak, whereas 
for slower-than-sound neutrons the TDS tends to give 
a flat background across the Bragg reflection. These 
theoretical predictions are supported by experiments 
using pulsed neutron diffraction from single crystals 
of perfect silicon. In particular, the integrated TDS 
across a reflection undergoes a pronounced fall when 
the neutron velocity drops below the velocity of 
sound. 

* Now at: Chemical Crystallography Laboratory, 9 Parks Road, 
Oxford OX1 3PD, England. 
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1. Introduction 

In a diffraction experiment, with either a single crystal 
or a polycrystalline sample, the measured intensity 
of a Bragg reflection will include a contribution from 
thermal diffuse scattering (TDS) which arises from 
the scattering of the incident beam by phonons. For 
X-rays, the one-phonon TDS is not subtracted with 
the background measured on either side of the reflec- 
tion, since it rises to a maximum at the same point 
as the Bragg peak itself. This then causes the so-called 
TDS error in estimating Bragg intensities. 

For thermal neutrons, the situation is quite different 
(Willis, 1970). The reason is that the neutron energy 
is comparable with the phonon energy, whereas X- 
rays have energies that are five orders of magnitude 
higher. Consequently, the condition 

[kl=lkol (1) 

(where k and ko are the wave vectors of the scattered 
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and inddent  radiation respectively) for the one- 
phonon scattering of X-rays does not apply to 
neutrons. Instead we must write 

Ikl = Ikol -  8/3q, (2) 
where the extra term, e/3q, is comparable in magnitude 
with Ikl-lkol. ~ in (2) is either +1 or -1 :  e = + 1  
corresponds to phonon emission (creation) and e = 
-1  to phonon absorption (annihilation)./3 is the ratio 
of the velocity of sound in the crystal to the neutron 
velocity, and q is the wave number of the phonon 
associated with the scattering process. It is assumed 
in (2) that q< ko (i.e. that the TDS is close to the 
Bragg position) and that the velocity of sound associ- 
ated with each acoustic mode is isotropic. 

Before calculating the intensity of the TDS at a 
given setting of the crystal it is necessary to define 
the locus in reciprocal space of the end point of the 
phonon wave vector q. This locus is referred to 
as the scattering surface. [The phonon wave vector q 
joins the end points of the scattering vector ( k - k  o) 
and the reciprocal-lattice vector.] For X-rays this 
locus coincides with the Ewald sphere in accordance 
with (1), but for neutrons it is more complicated. 
From (2) the end point of q lies on a conic of eccen- 
tricity 1//3.* If the neutrons are faster than sound 
(/3 < 1), the locus is a hyperboloid of two sheets, with 
the q vectors on one sheet corresponding to emission 
of phonons and on the other sheet to absorption. If 
the neutrons are slower than sound (/3 > 1), the locus 
is an ellipsoid: scattering now occurs either by 
emission or by absorption but not by both together. 
These two types of neutron scattering surface are 
illustrated in Fig. 1. 

* This is strictly correct for 0 = 0 only. For 0 > 0, the eccentricity 
is 1/(/3 cos 0): see § 3 for the origin of this geometrical term. 
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Fig. 1. Scattering surfaces for one-phonon scattering of neutrons: 
(a) for neutrons faster than sound, (b) for neutrons slower than 
sound. The scattering surface for X-rays is the Ewald sphere 
(broken lines). Po, P1,..., P5 are different positions of the 
reciprocal-lattice point with respect to the Ewald sphere (after 
Cooper, 1971). 

Knowing the geometry of the scattering surface for 
each setting of  the crystal, and applying standard 
formulae for the one-phonon scattering cross section 
associated with each q vector lying on the surface, 
we can calculate easily the integrated TDS intensity, 
laDs, lying above the straight-line background across 
the Bragg peak. The results are (Cooper, 1971): 

(a) X-rays. The TDS rises to a maximum at the 
Bragg peak and the TDS error can be derived if the 
elastic constants of the crystal are known. 

(b) Neutrons:/3 < 1. The TDS rises to a maximum, 
just as for X-rays, and ITDs is obtained using the same 
formulae as for X-rays with the scattering factor for 
X-rays replaced by the neutron scattering amplitude. 
[This is a remarkable result in view of the different 
scattering surfaces for (a) and (b).] 

(c) Neutrons: /3 < 1. The variation in intensity of 
the TDS is much less pronounced than for (a) and 
(b). For a given value of q, the integrated intensity 
per mode is proportional to 1/q2. However, the num- 
ber of modes participating in the scattering falls as 
the scattering surface approaches the reciprocal- 
lattice point, and the two effects combine to produce 
a flat TDS background near the Bragg peak. laDs is 
then zero. 

In this paper we shall describe an experiment on 
silicon illustrating the sharp distinction between cases 
(b) and (e). The neutron Laue technique was used 
as this is a convenient method of determining lads 
as a function of neutron wavelength. 

2. Experiment 
The single-crystal Laue method with neutrons was 
first proposed by Buras & Leciejewicz (1964). Poly- 
chromatic neutrons are scattered at a fixed angle 20 
by the sample and the time-of-flight technique is used 
to separate the detected neutrons in accordance with 
their wavelength. The time of flight, t, for neutrons 
of wavelength A is related to the total length of the 
flight path, L, by 

A = 0.003955t/L, (3) 

where A is in /~, t in I~s and L in m. The timing 
measurement requires the initial production of 
neutron pulses, no more than a few ~s in duration, 
which disperse themselves in time as they travel to 
the sample and are then scattered to the detector. 

The neutron source for the present experiment was 
the Harwell electron linear accelerator Helios (Lynn, 
1980) which was operated at a pulse repetition 
frequency of 75 Hz - sufficiently small to avoid frame 
overlap between successive pulses. A single crystal 
of dislocation-free silicon, in the form of a circular 
disc 50 mm in diameter and a few mm in thickness, 
was mounted on large goniometer arcs and placed 
on the to-rotation table of the diilractometer which 
has a flight path, L, from the moderator to the detector 
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of 11.96 m. The arcs had been adjusted previously to 
bring the [220] axis, lying in the plane of the disc, 
into the horizontal plane. The [112] axis of the crystal 
was normal to this plane. The detector was set at a 

.-fixed angle 20 in the range 20 to 60 ° , the [220] axis 
set at 90 ° -  0 to the incident beam, and intensity 
measurements carded out of the hhO zone of reflec- 
tions (see Fig. 2). The widths of the time channels 
chosen for the multi-channel analyser were 2 or 4 I~s 
and the total time of counting at a given 2 0 was four 
days. 

Fig. 3 shows some typical data, illustrating the 
Bragg and thermal diffuse scattering associated with 
the 220 and 440 peaks. The TDS is particularly pro- 
nounced since its intensity is governed by the kine- 
matic conditions of scattering, whereas the Bragg 
intensity for a perfect crystal is limited by dynamical 
diffraction and is independent of the thickness t of 
the crystal (apart from weak PendellSsung oscilla- 
tions) for t exceeding the extinction distance. The 

INCIDENT BEAM 
MONITOR SILICON 

S t CRYSTAL 

gNEUTR~-N PULSE /~ 11.5m ~ 0.5~- 
FROM LINAC 

Fig. 2. Schematic arrangement of a pulsed neutron diffraction 
experiment. S represents the neutron source and associated 
moderator. D is the detector and MCA is the multi-channel time 
analyser. 
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Fig. 3. The 220 and 440 reflections of silicon (20 = 58"4°), showing 
TDS under the Bragg peak. 

background in Fig. 3 is fiat at a sufficiently large 
distance from the peaks and is extrapolated as a 
broken line under the peaks. 

The integrated intensity (Bragg+ TDS) was 
measured above this broken line, and ITDS was sepa- 
rated from the integrated Bragg intensity by estimat- 
ing the latter from the longest-wavelength diffraction 
peaks where the TDS is known to be fiat. The total 
integrated intensities for the hhO reflections were 
measured at four different scattering angles. These 
results are analysed in the next section. 

3. Analysis of experimental data 

Firstly, we assume that the TDS under the Bragg peak 
arises entirely from one-phonon scattering. (Multi- 
phonon scattering will be largely subtracted in the 
background measurement.) Using the kinematic 
theory for the one-phonon scattering of neutrons of 
fixed wavelength A, and making the somewhat drastic 
assumption that the volume scanned is a sphere 
centred on the reciprocal-lattice point, we find that 
the integrated intensity of one-phonon scattering ITDS 

4.0 880 [ 660 I 

2 . 0  - 

IT 

2.0 

1.0 
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Fig. 4. Integrated thermal diffuse scattering ITDS.t under the Bragg 
peak divided by ¢(;t)A 2 versus sin 2 0/,X 2 at a series of scattering 
angles. The indices are given of the reflections that were 
measured along the [110] direction. ITDS., falls off sharply when 
the neutron velocity drops below the velocity of sound in the 
crystal. 
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for faster-than-sound neutrons is (Willis & Pryor, 
1975) 

IXDS,2, = constant x (sin 20/A2)F2e-2MksT. (4) 

Here F is the structure factor for Bragg scattering, 
e - 2 M  is the Debye-Waller factor (where M =  
B sin 2 0/A 2) and T is the absolute temperature. The 
constant includes the elastic constants and the range 
of scan. Equation (4) is essentially unchanged for 
more realistic scans (Cooper, 1971). 

Expression (4) is readily converted to the time-of- 
flight case by using the prescription of Buras & 
Gerward (1975). Thus 

ITDS,t = constant x ~0 (A)A2F2e-2MkBT, (5) 

where ~o(A) is the incident-beam intensity per unit 
wavelength range. If we plot 

ITDS,,I[ ~O( X )X 2F2T] 
on a logarithmic scale versus sin 2 0/• 2, the points 
should lie on a straight line of s lope-2B.  

The measured data have been normalized to the 
incident flux ~o (A), which was determined by monitor- 
ing the incident spectrum with a dilute 3He detector 
and correcting for the variation of detector efficiency 
with neutron wavelength. Moreover, T is constant 
(293 K) and the structure factor F of silicon is the 
same for all reflections in the hhO zone. Thus in Fig. 
4 we have simply plotted In (ITDs, t)/tp(A)A 2 versus 
sin 2 0/A 2. 

At large values of sin 2 0/A 2 the curves have a nega- 
tive slope indicating B---0.42 A 2, which is close to 
the accepted value, B = 0.46/k 2, quoted by Krec & 
Steiner (1984). However, as the wavelength increases 
and the neutron velocity falls below the velocity of 
sound in the crystal, there is a sharp fall-off in the 

integrated intensity ITDS [as compared with that 
calculatbd from (5)]. The neutron velocity v is related 
to its wavelength by the de Broglie relation A = 
h/(m,v). The lines L and T in Fig. 4 indicate the 
range of sin 2 0/A 2 over which the neutron velocity 
lies between the maximum longitudinal (L) and 
minimum transverse (T) sound velocities. In the time- 
of-flight case the locus in reciprocal space for elastic 
scattering is a line along the reciprocal-lattice vector, 
unlike the fixed-wavelength case where this locus is 
the Ewald sphere. This line is at 90 ° -  0 to the scattered 
wave vector k and so a geometrical term, see O, is 
necessary in Calculating the positions of L and T in 
Fig. 4. The sound velocities were calculated from the 
elastic constants given by McSkimin (1953). 
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Abstract 

Two different kinds of interaction between three 
waves Do, Dh and Dg in a perfect crystal are investi- 
gated in the case of Laue scattering using the Takagi- 
Taupin equations. Polarization effects (coupling 

0108-7673 / 86/030191-07501.50 

between t~ and ,~ waves) are neglected, and it is 
assumed that the incoming vacuum wave D(o e) has a 
small wave-front area whose spatial extension is simu- 
lated by a point source on the crystal surface. The 
solutions of the diffraction equations thus constitute 
the boundary-value Green functions for the wave 

© 1986 International Union of Crystallography 


